Deep Clustered Convolutional Kernels
نویسندگان
چکیده
Deep neural networks have recently achieved state of the art performance thanks to new training algorithms for rapid parameter estimation and new regularizations to reduce overfitting. However, in practice the network architecture has to be manually set by domain experts, generally by a costly trial and error procedure, which often accounts for a large portion of the final system performance. We view this as a limitation and propose a novel training algorithm that automatically optimizes network architecture, by progressively increasing model complexity and then eliminating model redundancy by selectively removing parameters at training time. For convolutional neural networks, our method relies on iterative split/merge clustering of convolutional kernels interleaved by stochastic gradient descent. We present a training algorithm and experimental results on three different vision tasks, showing improved performance compared to similarly sized hand-crafted architectures.
منابع مشابه
An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملIrregular Convolutional Neural Networks
Convolutional kernels are basic and vital components of deep Convolutional Neural Networks (CNN). In this paper, we equip convolutional kernels with shape attributes to generate the deep Irregular Convolutional Neural Networks (ICNN). Compared to traditional CNN applying regular convolutional kernels like 3× 3, our approach trains irregular kernel shapes to better fit the geometric variations o...
متن کاملWhat Does a TextCNN Learn?
TextCNN, the convolutional neural network for text, is a useful deep learning algorithm for sentence classification tasks such as sentiment analysis and question classification[2]. However, neural networks have long been known as black boxes because interpreting them is a challenging task. Researchers have developed several tools to understand a CNN for image classification by deep visualizatio...
متن کاملDeep Convolutional Networks on the Pitch Spiral For Music Instrument Recognition
Musical performance combines a wide range of pitches, nuances, and expressive techniques. Audio-based classification of musical instruments thus requires to build signal representations that are invariant to such transformations. This article investigates the construction of learned convolutional architectures for instrument recognition, given a limited amount of annotated training data. In thi...
متن کاملA New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals
Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)....
متن کامل